This Notice of Funding Opportunity (NOFO) solicits applications to create a Marmoset Coordination Center. The awardee will be responsible for two separate but related activities. The first activity will be to become the repository for genomic, pedigree, and event records (date of birth, medical, reproductive history) for captive marmosets. The awardee is expected to use that information to help make breeding recommendations to maximize the health and genetic diversity of the marmosets in primate colonies. Applicants are encouraged to adopt the model used by the Association of Zoos and Aquariums.
Notices of Funding Opportunities
National Institutes of Health (NIH) BRAIN Initiative notices of funding opportunities (NOFOs), requests for applications (RFAs), program announcements (PAs), and other NIH Guide announcements are listed below. Search this page to find all notices of special interest (NOSI). Search the Closed Opportunities page to find expired opportunities.
Learn more about NIH’s grant mechanisms.
Learn about the NIH Data Management and Sharing Policy, which all NIH applications must follow.
To see more NIH-funded awards, please visit NIH Grants and Funding.
For more about NIH BRAIN Initiative research and associated funding opportunities, visit the Research Overview.
This Notice of Funding Opportunity (NOFO) solicits applications for one or more Data Coordinating Centers (DCCs) to support BRAIN CONNECTS, a networked consortium of Comprehensive Centers and Specialized Projects funded under RFA-NS-22-047, RFA-NS-22-048, and RFA-NS-22-049. The goals of these awards are to develop the research capacity and technical capabilities for comprehensive brain-wide connectivity mapping in mouse, human, and non-human primate (NHP). BRAIN CONNECTS projects will collect and process unprecedented volumes of anatomical data by scaling up cutting-edge acquisition modalities and analysis methods, to demonstrate the feasibility of collecting, reconstructing, analyzing, integrating, disseminating, and interpreting connectivity maps from entire brains. The resulting feasibility data from these awards are expected to inform NIH decisions on program continuation in a potential subsequent five-year funding period for production of brain-wide wiring diagrams. NIH expects to fund one or more BRAIN CONNECTS DCCs, which will collaborate with CONNECTS data generating projects to (1) coordinate activities of the BRAIN CONNECTS Network, (2) develop and harmonize common data processing pipelines, (3) integrate and disseminate data analytic tools and capabilities, (4) establish a unified knowledge base for connectivity data of diverse modalities, and (5) organize and implement outreach and engagement to the wider research community and the general public. Awards will be integrated into the BRAIN CONNECTS Network as a coordinated effort aimed at developing the ability to generate wiring diagrams spanning entire brains across multiple scales and species.
This FOA seeks applications for unique and innovative recording and/or modulation technologies that are in the earliest stage of development, including new and untested ideas that are in the initial stages of conceptualization. Some projects may aim to increase recording or modulation capabilities by many orders of magnitude, while others may aim to improve the precision and selectivity of recording or modulation (also referred to as stimulation, perturbation, or manipulation). A wide range of modalities are appropriate including acoustic, chemical, electrical, magnetic, and optical, as well as the use of genetic tools. Invasive or non-invasive approaches are sought that will enable large-scale recording and/or precise manipulation of neural activity, and that would ultimately be compatible with experiments in humans or behaving animals. Applications are encouraged from any qualified individual, including chemists, physicists, engineers, theoreticians, materials scientists, and others from fields not typically involved with neuroscience research. This FOA requires a Plan for Enhancing Diverse Perspectives (PEDP), which will be assessed as part of the scientific and technical peer review evaluation. Applications that fail to include a PEDP will be considered incomplete and will be withdrawn.
Reissue of RFA-MH-21-205 to comply with DMS Policy. This Notice of Funding Opportunity (NOFO), in support of the NIH Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative, is one of several NOFOs aimed at supporting transformative discoveries that will lead to breakthroughs in understanding human brain function. Guided by the long-term scientific plan, BRAIN 2025: A Scientific Vision, this NOFO specifically seeks to support efforts addressing core ethical issues associated with research focused on the human brain and resulting from emerging technologies and advancements supported by the BRAIN Initiative. The hope is that efforts supported under this NOFO might be both complementary and integrative with the transformative, breakthrough neuroscience discoveries supported through the BRAIN Initiative.
The purpose of this Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative is to encourage applications that will develop and validate novel tools to facilitate the detailed analysis of complex circuits and provide insights into cellular interactions that underlie brain function. The new tools and technologies should inform and/or exploit cell-type and/or circuit-level specificity. Plans for validating the utility of the tool/technology will be an essential feature of a successful application. The development of new genetic and non-genetic tools for delivering genes, proteins and chemicals to cells of interest or approaches that are expected to target specific cell types and/or circuits in the nervous system with greater precision and sensitivity than currently established methods are encouraged. Tools that can be used in a number of species/model organisms rather than those restricted to a single species are highly desired. Applications that provide approaches that break through existing technical barriers to substantially improve current capabilities are highly encouraged.
This is a reissue of RFA-MH-21-175 to comply with DMSP policy. The purpose of this Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative is to encourage applications that will develop and validate novel tools to facilitate the detailed analysis of complex circuits and provide insights into cellular interactions that underlie brain function. The new tools and technologies should inform and/or exploit cell-type and/or circuit-level specificity. Plans for validating the utility of the tool/technology will be an essential feature of a successful application. The development of new genetic and non-genetic tools for delivering genes, proteins and chemicals to cells of interest or approaches that are expected to target specific cell types and/or circuits in the nervous system with greater precision and sensitivity than currently established methods are encouraged. Tools that can be used in a number of species/model organisms rather than those restricted to a single species are highly desired. Applications that provide approaches that break through existing technical barriers to substantially improve current capabilities are highly encouraged.
Reissue of RFA-MH-22-115 to comply with DMSP policy. The purpose of this Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative is to encourage applications that will develop and validate novel tools to facilitate the detailed analysis and manipulation of complex circuits and provide insights into cellular interactions that underlie brain function. Critical advances in the treatment of brain disorders in human populations are hindered by our lack of ability to monitor and manipulate circuitry in safe, minimally-invasive ways. Clinical intervention with novel cell and circuit specific tools will require extensive focused research designed to remove barriers to delivery of gene therapies. In addition to identification and removal of barriers, the need to specifically target dysfunctional circuitry poses additional challenges. Neuroscience has experienced an impressive influx of exciting new research tools in the past decade, especially since the launch of the BRAIN Initiative. However, the majority of these cutting edge tools have been developed for use in model organisms, primarily rodents, fish and flies. These cutting edge tools, such as viral delivery of genetic constructs, are increasingly adaptable to large brains and more importantly are emerging as potential human therapeutic strategies for brain disorders. A pressing need to develop tools for use in large brains, more directly relevant to the human brain is the focus of this initiative. The new tools and technologies should inform and/or exploit cell-type and/or circuit-level specificity. Plans for validating the utility of the tool/technology will be an essential feature of a successful application.
Reissue of RFA-NS-22-027 to comply with DMSP - No new dates are being added. (Reissue of RFA-NS-18-014 and RFA-NS-21-014) This R34 NOFO solicits applications that offer a limited scope of aims and an approach that will establish feasibility, validity, or other technically qualifying results that, if successful, would support, enable, and/or lay the groundwork for a potential, subsequent Targeted Brain Circuits Projects - TargetedBCP R01, as described in the companion NOFO (RFA-NS-22-026). Applications should be exploratory research projects that use innovative, methodologically-integrated approaches to understand how circuit activity gives rise to mental experience and behavior.